

Name:	
Period:	

UNIT: AUTONOMOUS VEHICLE

ACT-BASED MATH: MAPPING AND NAVIGATION PLANNING

Here are ACT-aligned math activities for the **Robotic Car Kit** that help students apply real-world skills in measurement, speed and distance calculations, ratio and proportion adjustments, and data interpretation related to sensor readings, motion paths, and acceleration tracking.

OBJECTIVE:

Students will plot an efficient navigation path for the robotic car.

MATERIALS NEEDED:

- Grid paper
- Robotic car
- Compass
- Measuring tape

STUDENT DIRECTIONS:

Goal:

To develop students' understanding of spatial reasoning, geometry, and coordinate planning by designing, calculating, and testing optimal paths for a robotic car across a grid-based map. This activity supports ACT Math skills such as geometry, measurement, and strategic problem-solving.

Step 1: Design a Map for the Robotic Car

- On your **grid paper**, sketch a simple map or path using labeled **Points A, B, C, D**, etc.
- The grid should have equal squares (e.g., 1 square = 1 meter or 0.5 meters).
- Include **obstacles or restricted zones** the robotic car must avoid.
- Define a start point and an end point, and draw at least two possible paths the robotic car can take.

Pro Tip: Use color-coded lines to represent alternate paths (e.g., red = direct, blue = turn-based route).

Step 2: Calculate the Shortest or Most Efficient Path

- Using a ruler and your scale, measure the total distance of each possible path.
- Use the **Pythagorean Theorem** if needed to calculate diagonal distances.
- Calculate turning angles with a protractor (e.g., 90°, 45°, or custom angles).
- Determine which path is shortest or has the fewest movements.

Name:	
Period:	
•	

Example:

Path	Distance (m)	Turns	Notes
$A \rightarrow B \rightarrow C$	5.0	2	Right angle turns
$A \rightarrow D$	5.0	0	Straight line
$A \rightarrow E \rightarrow F$	5.5	1	Diagonal path

MATH STRATEGY TIP:

If two paths have equal distance, choose the one with **fewer or easier turns** to minimize error in programming.

Step 3: Program the Robotic Car and Test It

- Use basic commands to program your robotic car to follow your chosen path (e.g., move forward 2m, turn right, move forward 3m).
- Run the car through the course. Use a **stopwatch** if comparing how long each path takes.
- Observe and record whether the car **successfully follows the planned path** or needs adjustments.

Reflection Questions:

- Did the robotic car follow your planned path accurately?
- Were the angles and distances correct?
- How would you improve your path next time?

ACT-STYLE QUESTION:

- If the robotic car must travel from Point A to Point B (5 meters apart) using two turns, what is the optimal set of moves?
 - A. Move forward 5m
 - B. Move forward 3m, turn right, move forward 2m
 - C. Move forward 2.5m, turn 45 degrees, move forward 2.5m
 - D. Move forward 2m, turn left, move forward 3m

Name:	
Period:	
•	

Why These Activities and Questions Matter

By engaging in math-based activities connected to the **Robotic Car Kit**, students:

- Apply math concepts to real-world systems such as speed, distance, time calculations, and sensor-based adjustments.
- Build skills in ratio reasoning, unit conversions, interpreting graphs, and analyzing data from robotic movements.
- Use formulas to calculate acceleration, predict travel times, and optimize navigation paths in different driving conditions.

These hands-on, math-rich tasks mirror the ACT Math emphasis on practical problem-solving and quantitative reasoning—preparing students for test success and real-world applications in STEM careers.