

Name:	
Period:	

UNIT: ELECTRICAL CIRCUITS

LIGHT TRACKER BEACON

OBJECTIVE:

Build a working LED circuit that lights the way for your jungle rescue team at night! You'll model how electrical energy from a battery is transferred to light energy—and even reflect it across the terrain.

MATERIALS:

- ✓ Breadboard or small cardboard base
- ✓ 2 LED lights (any color)
- √ 1 battery (AA or 9V) + holder
- \checkmark 2 resistors (330 Ω or 100 Ω)
- ✓ Jumper wires or foil strips
- ✓ Switch (or a homemade pressure switch using foil)
- ✓ Small mirror or aluminum foil sheet

STUDENT DIRECTIONS:

Step 1: Understand the Flow

Look at your battery. It stores chemical potential energy. When you connect it to a circuit, that energy turns into electrical energy, which powers your LED (which emits light energy).

Step 2: Set Up Your Power

- 1. Place your battery into the holder.
- Connect a red wire from the positive terminal of the battery holder to your breadboard or foil path.
- 3. Connect a black wire from the negative terminal to a different area on your board (or second foil strip). This sets your circuit's main power path.

Step 3: Place the LEDs

- 1. Look at each LED. One leg is longer (positive or anode), and one is shorter (negative or cathode).
- 2. Place the LEDs into the breadboard (or tape them onto cardboard with foil). Make sure:
 - a. The positive leg connects toward the red wire/power.
 - b. The negative leg connects toward the black wire/ground.

Name:	
Period:	
•	

Step 4: Add the Resistors

- 1. Connect a resistor in front of each LED to prevent it from burning out.
- 2. Resistors can go between the power wire and the LED's positive leg, or between the LED's negative leg and the ground wire.
 - a. Example: Battery $(+) \rightarrow \text{Resistor} \rightarrow \text{LED} \rightarrow \text{Wire} \rightarrow \text{Battery} (-)$

Step 5: Add a Switch

- 1. You can use a push-button switch or make your own with two foil pieces and a sponge.
- 2. Put the switch between the battery and the rest of the circuit. This way, when the switch is pressed or touched, the circuit closes and turns on the LEDs.

Step 6: Aim and Reflect

- 1. Use a mirror or piece of foil to reflect the LED light across your "rescue zone."
- 2. Try angling the mirror to flash light in specific directions—like an SOS signal.

Test & Record:

- 1. Do both LEDs light up?
- 2. What happens when you cover one LED?

۷.	what happens when you cover one LED?
3.	Try using a stronger resistor (like 1,000 Ω). What changes about the brightness?
Write	your answers below:
→	
Reflec	tion Prompts: How does energy travel from the battery to the light? Think about each part the energy flows through.
2	Why is resistance important in a circuit? What would happen without a resistor?
۷.	with 15 resistance important in a circuit: what would happen without a resistor:

		STEM 101 Powered by THE STEM ACADEMY	Name:Period:			
3.	3. In a real jungle rescue, how would a system like this help your team?					

Optional Challenge:

Can you modify your circuit to make only one LED light at a time? (Hint: Try adding a second switch!)

STANDARDS ALIGNMENT

NGSS: MS-PS3-2 STEL: STEL 1B, STEL 2B, STEL 3B, STEL 4B, STEL 6B, STEL 7B CCSS: CCSS.MATH.CONTENT.6.EE.A.2, CCSS.MATH.CONTENT.6.RP.A.1, CCSS.MATH.CONTENT.7.EE.B.3, CCSS.MATH.CONTENT.6.SP.B.5, CCSS.MATH.PRACTICE.MP2, CCSS.MATH.PRACTICE.MP4, CCSS.MATH.PRACTICE.MP5