

Name:	
Period:	

UNIT: FIRST AID

"BUILD-A-BANDAGE" – DIY BURN WRAP DESIGN SPRINT

CONCEPT:

Design and test your own cooling wrap to simulate real-world first aid solutions. Explore how different materials affect thermal energy transfer and how chemical/physical properties contribute to healing performance.

MATERIALS:

- ✓ Aluminum foil
- ✓ Paper towels
- ✓ Plastic wrap
- ✓ Cotton rounds or pads
- √ Fabric scraps (cotton, fleece, etc.)
- ✓ Medical or masking tape
- ✓ Resealable plastic bags (pre-filled with warm water ~40–45°C)
- ✓ Ice cubes
- ✓ Stopwatch
- ✓ Thermometer
- ✓ Ruler (optional, to measure wrap thickness)

STUDENT DIRECTIONS:

Step 1: Set Up the "Burn Site"

- Fill a resealable plastic bag with warm water (~40–45°C) to simulate burned skin. Seal tightly.
- This will be your test surface. Place it flat on the table.

Step 2: Design Your Wrap

- Choose 2–3 materials from the bin to build a custom cooling bandage.
- You may layer materials (e.g., paper towel under foil, or cloth + plastic wrap) to combine comfort and heat-shielding.
- Use tape to hold the design together if needed.

Name:	
Period:	
•	

• OPTIONAL: Use a ruler to measure or record the **thickness** of your wrap.

Step 3: Test Cooling Efficiency

- Wrap your DIY bandage around the plastic bag.
- Place an ice cube on top of the bandage.
- Start the stopwatch.
- Measure the internal temperature of the water in the bag once every minute for 5 minutes.
- Record your results.

Data Table:

Time (min)	Internal Temp (°C)
0 (start)	
1 min	
2 min	
3 min	
4 min	
5 min	

Analyze & Reflect:

1.	Did your design lower the temperature by at least 10°C within 3 minutes?
2.	Which material(s) do you think helped most with cooling? Why?
3.	Was your wrap comfortable to the touch? Could it be used on real skin?
4.	If you had to improve this design for field use (limited supplies, fast action), what would you
	change?

		STEM Powered by THE	101 E STEM ACADEMY	Period:	
5.	Wh	ich properties (absorb	ency, insulation,	, flexibility) mattered most in your	final design?

Wrap-Up Reflection:

Have students reflect in journals or in small groups:

- What makes an ideal first aid wrap?
- How does temperature impact chemical and biological reactions?
- Why is measurement and testing essential in designing real medical products?

STANDARDS ALIGNMENT

NGSS: HS-PS1-3, HS-PS3-4 STEL: STEL 1H, STEL 2H, STEL 4H, STEL 8H, STEL 9J CCSS: CCSS.MATH.CONTENT.HSS.ID.B.6, CCSS.MATH.CONTENT.HSF.IF.C.7, CCSS.MATH.PRACTICE.MP2, CCSS.MATH.PRACTICE.MP4, CCSS.MATH.PRACTICE.MP5