

Name:	
Period:	

UNIT: MEASUREMENT

BROKEN ARM BLUEPRINT

OBJECTIVE:

Use **precision measurement** tools to measure and compare the physical properties of "replacement parts."

GOAL:

You're acting as a biomedical engineer helping to design a replacement rod for a broken arm. Your job is to measure and test different sample materials and decide which one is the best match for the "reference bone."

MATERIALS:

- ✓ Calipers or ruler (for measuring diameter/thickness)
- ✓ Samples of rod-like materials (pencil, plastic straw, paper straw, wooden dowel, etc.)
- ✓ Digital scale or balance (for weight comparison)
- ✓ Optional: Spring + weights (to test compression)
- ✓ "Reference part" (plastic bone or wooden dowel marked as the ideal)
- ✓ Data recording sheet

STUDENT DIRECTIONS:

1. Measure Size

- Use the calipers or ruler to measure the diameter and length of each sample rod.
- Compare those measurements to the reference part.
- Record all your data in a chart.

Data Example Table:

Sample	Diameter (mm)	Length (cm)	Matches Reference? (Yes/No)
Pencil			
Dowel			

2. Compare Strength (Qualitative Test)

• Pick up each sample and gently press it down over a table edge to **feel stiffness** (Does it bend? How much?).

Name:	
Period:	
•	

- Optional: Stack small weights on top or use a spring compression setup to test how much each sample resists force.
- Observe and record which ones stay straight, bend, or collapse.

3. Check Weight or Density

- Use a digital scale to find the mass of each sample.
- Consider how the **weight might affect comfort and usability** if it were inside a human arm.

Density Tip: A heavier but smaller part may be **denser**, meaning its material is more compact and possibly stronger.

4. Choose the Best Match

 Based on your data, pick the material that is closest in size, strength, and weight to the reference part.

Discussion Prompt:

•	How d	How does the bulk structure (the way the material is built or packed) affect its strength and			
	function?				
	0	Think about bones—are they solid or hollow? Why?			
	0	Why might we not always want the heaviest or hardest material?			
•	How d	oes the bulk structure of a material relate to its strength or function?			

STANDARDS ALIGNMENT

NGSS: HS-PS1-3 **STEL**: STEL 1E, STEL 2E, STEL 3E, STEL 4E, STEL 5E **CCSS**: CCSS.MATH.CONTENT.HSN-Q.A.1, CCSS.MATH.CONTENT.HSN-Q.A.2, CCSS.MATH.CONTENT.HSN-Q.A.3, CCSS.MATH.CONTENT.6.SP.B.4–5, CCSS.MATH.PRACTICE.MP4, CCSS.MATH.PRACTICE.MP5