

Name:	
Period:	

UNIT: MEASUREMENT

"POWER THE ARM" – VOLTAGE & ENERGY TRANSFER

OBJECTIVE:

Use a multimeter to measure voltage in a circuit designed to "power" a part of the rover.

GOAL:

You will build a simple LED circuit, use a multimeter to measure energy flow (voltage), and engineer a modification that lets the LED turn on only when a condition is met—just like powering a robotic arm on a rover!

MATERIALS:

- ✓ Coin battery (CR2032 or similar)
- ✓ LED light
- ✓ Alligator clips or wire leads
- ✓ Paperclip (for a manual switch)
- ✓ Multimeter (with voltage and continuity modes)
- ✓ Optional: Resistor, tilt switch, or pressure sensor

STUDENT DIRECTIONS:

Step 1: Build a Basic Circuit

- Connect the positive (+) side of the coin battery to the long leg (anode) of the LED using wire or clips.
- 2. Connect the **short leg (cathode)** of the LED to the **negative (-)** side of the battery to complete the circuit.
- 3. Insert a paperclip between the circuit as a simple switch—pressing it completes the connection.

Tip: If the LED doesn't light, check your connections or reverse the LED legs.

Name:	
Period:	
•	

Step 2: Use the Multimeter

1. I	Measure	Voltage	Across	the	LED
------	---------	---------	---------------	-----	------------

- Set your multimeter to DC voltage (V=).
- o Place the red probe on the positive LED leg and black on the negative.
- Record the voltage:
 - ➤ Voltage across LED: _____ V

2. Test Continuity of the Wires

- Switch your multimeter to continuity mode (symbol).
- Touch both probes to each end of a wire.
- o If it beeps, the wire conducts electricity well.

3. (Optional) Measure Resistance of Components

- \circ Set your multimeter to Ω (ohms).
- Test any resistors or other parts (like a pressure switch).
- Record the resistance value.

Step 3: Engineering Challenge – Conditional Power

Your goal: Modify your circuit so the LED turns on only when the "arm" moves or when a specific condition is met.

Choose one idea:

- Use a tilt sensor or a hanging paperclip that shifts when tilted
- Use a **pressure switch** (e.g., foil layers that connect only when pressed)
- Use your **paperclip switch** to close when a part of the rover moves

Sketch or describe your design

•	My design idea:	
	, 0	

Name:	
Period:	
•	

Reflection Questions:

•	How does energy transfer from the battery to the LED in your circuit?
•	What happened when you changed the materials or added a switch?
•	Why might a real robotic arm need conditional circuits like this?
	

STANDARDS ALIGNMENT

NGSS: HS-PS3-3 STEL: STEL 1E, STEL 2E, STEL 7F, STEL 8F, STEL 11F CCSS: CCSS.MATH.CONTENT.HSN.Q.A.1, CCSS.MATH.CONTENT.HSN.Q.A.3, CCSS.MATH.CONTENT.HSA.CED.A.2, CCSS.MATH.PRACTICE.MP4, CCSS.MATH.PRACTICE.MP5