

Name:	
Period:	

UNIT: MEASUREMENT

"FIELD FORCES" – ELECTROMAGNETIC ARM ASSIST

OBJECTIVE:

Investigate how electric or magnetic fields interact with objects.

GOAL:

You will build a simple electromagnet, explore how well it can lift or move magnetic objects, and measure its electrical properties using a multimeter. Then, you'll reflect on how electromagnets could help move parts in a robotic arm.

MATERIALS:

- ✓ Iron nail (3–4 inches)
- ✓ Insulated copper wire (about 3 feet)
- ✓ AA battery (or 9V battery for stronger field)
- ✓ Electrical tape or alligator clips
- ✓ Paperclips, small metal objects
- ✓ Compass (optional)
- ✓ Multimeter (for voltage and resistance)

STUDENT DIRECTIONS:

Step 1: Build Your Electromagnet

- 1. Wrap the Wire
 - Tightly coil the wire around the nail, leaving about 3 inches of wire free on each end.
 - Try to make the coils neat and close together (this increases the strength).
- 2. Connect to Power
 - Tape one wire end to the positive (+) terminal of the battery.
 - Quickly touch and hold the other wire end to the negative (–) terminal.
 - Only connect for short intervals (10–15 seconds) to prevent the wire from overheating!

3. Test It

Try to pick up paperclips or attract small metal objects.

Name:	
Period:	
•	

o Move a compass near your electromagnet—does the needle react?

Step 2: Measure the Electromagnetic Properties

- 1. Voltage Across Your Coil
 - Set your multimeter to DC Voltage (V=).
 - o Connect probes to both wire ends while connected to the battery.
 - Record the voltage:

> Coil Voltage: ______V

2. Resistance of the Coil

- Disconnect the battery.
- \circ Set the multimeter to resistance (Ω).
- Connect probes to each wire end of the coil.
- Record resistance:

Coil Resistance: Ω

Engineering Reflection:

•	What variables seemed to make your electromagnet stronger?
•	How could a robotic arm use this kind of electromagnetic system to pick things up?
•	What might limit how strong your electromagnet can be?

Extension Challenge (Optional):

Can you increase the strength of your magnet by:

- Adding more coils?
- Using a larger nail?
- Using more batteries?

Test and compare results—record your changes and findings below.

STANDARDS ALIGNMENT

NGSS: HS-PS3-5 STEL: STEL 1E, STEL 2E, STEL 7F, STEL 8F, STEL 11F CCSS: CCSS.MATH.CONTENT.HSN.Q.A.1, CCSS.MATH.CONTENT.HSN.Q.A.3, CCSS.MATH.CONTENT.HSF.IF.C.7, CCSS.MATH.PRACTICE.MP2, CCSS.MATH.PRACTICE.MP5