

Name:	
Period:	

UNIT: UKULELE

ACT-BASED SCIENCE: SOUND WAVE VISUALIZATION WITH A TUNING APP

OBJECTIVE:

Analyze **sound waveforms** using a tuning app.

ACT SCORE TARGET: 20-23

STUDENT DIRECTIONS:

Goal:

Use a tuning app to observe and analyze how frequency, pitch, and waveform relate to sound produced by a ukulele.

Step 1: Set Up Your Tools

Materials Needed:

- Ukulele
- Smartphone or tablet with a tuning app (such as Cleartune, Pano Tuner, or any app that shows waveform and frequency)

Make sure you're in a quiet environment, so background noise doesn't interfere with readings.

Step 2: Play and Record an Open String

- 1. Choose one open string on your ukulele (e.g., the G string).
- 2. Use the tuning app to pluck the string and record the following:
 - o Pitch name (e.g., G4)
 - o Frequency in Hz (e.g., 392 Hz)
 - Waveform shape on the display (draw or describe)

Name:	
Period:	
•	

Fill in your notebook like this:

String Played	Pitch	Frequency (Hz)	Waveform Shape/Notes
G string	G4	392	Smooth sinusoidal

Step 3: Compare Different Notes

- 1. Play a different open string (e.g., A, E, or C) or use the tuning pegs to tune one string higher or lower.
- 2. Repeat the observation steps for the new note.
- 3. Compare the waveforms:
 - o Does the shape change?
 - o Does the frequency increase or decrease?
 - o How does the spacing of the waves (wavelength) differ?

Step 4: Analyze and Discuss

Write a brief summary (3–5 sentences) answering these questions:

- What happens to the waveform as the pitch goes higher?
- How do frequency and wavelength relate?
- Why is waveform analysis important for understanding sound?

Use scientific terms like frequency, wavelength, amplitude, and pitch in your explanation.

ACT-STYLE QUESTION:

- What happens to the wavelength when a ukulele string is tuned to a higher frequency?
 - A. Increases
 - B. Decreases
 - C. Stays the same
 - D. Depends on the material